
Journal of Plant Biology, April 2007, 50(2) : 132-138 REVIEW 

Recognition and Response in Plant-Pathogen Interactions 
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Most plants are resistant to the majority of pathogens. Susceptibility is the exception to the more common state of resistance, 
i.e., being refractory to infection. However, plant pathogens cause serious economic losses by reducing crop yield and quality. 
Although such organisms are relatively simple genetic entities, in plants, the mechanisms underlying the generation of dis- 
ease symptoms and resistance responses are complex and, often, unknown. The study of genes associated with plant-patho- 
gen resistance addresses fundamental questions about the molecular, biochemical, cellular, and physiological means of these 
interactions. Over the past 10 years, the cloning and analysis of numerous plant resistance genes has led researchers to for- 
mulate unifying theories about resistance and susceptibility, and the co-evolution of plant pathogens and their hosts. In this 
review, we discuss the identification of response genes that have been characterized at the molecular level, as well as their 
putative links to various signaling pathways. We also summarize the knowledge regarding crosstalk among signaling path- 
ways and plant resistance genes. 
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P A T H O G E N  R E C O G N I T I O N  

Resistance to invading microorganisms is often governed 
by specific recognition between plant and pathogen pro- 
teins. Here, we will describe examples of the best charac- 
terized recognition systems in plants, which mediate 
pathogen perceptions either through an awareness of 
"virulent determinants" (Avr), which act as specific elicitors 
and are unique for a particular pathogen, or via conserved 
microbial structures, i.e., pathogen-associated molecular 
patterns (PAMPs). 

R-gene-mediated pathogen recognition 
The defense strategy of plants is based on dominant resis- 

tance (R) genes, in which disease resistance is elicited by the 
products of avirulence (Avr) genes from the pathogen (Flor, 
1971). The R-proteins are variably expressed within a spe- 
cies, thus, allowing its distinct members to differ in their 
resistance to a particular organism. In general, the plant- 
pathogen interaction is highly specific. If a plant or a patho- 
gen lacks the appropriate R or avr gene, respectively, then 
activation of the plant-defense responses may be delayed or 
ineffective (Nimchuk et al., 2003). R-protein-mediated 
defense responses are frequently associated with a type of 
programmed cell death, i.e., the hypersensitive response 
(HR), that is believed to limit the spread of pathogens 
(Heath, 2000). 

Several R genes have now been cloned from a wide range 
of plant species. Despite the broad spectrum of resistance 
imparted by R proteins, these gene products can be catego- 
rized into five classes, according to their domain structures 
(Martin et al., 2003; Fig. 1). The majority of those proteins 
contains a nucleotide-binding site (NBS) and leucine rich 
repeats (LRRs); these are classified as NBB-LRR R proteins. 
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The Arabidopsis genome has over 150 genes that encode 
this class of proteins (Jones, 2001). NBS-LRR proteins can be 
further divided based on their amino (N)-termini, which 
may share homology with Toll and interleukin-1 receptor 
(TIR) proteins (TIR-NBS-LRR), or else contain a leucine-zip- 
per motif (LZ-NBS-LRR) or a coiled-coil motif (CC-NBS- 
LRR). Other conserved motifs found in the R-proteins 
include serine/threonine kinase domains and transmem- 
brane domains (Martin et al., 2003). 

Although many pathogen effector genes and the R genes 
that respond to them have been cloned, any direct binding 
between the effectors and R proteins has rarely been dem- 
onstrated. This suggests that, contrary to predicted models, 
the recognition of bacterial effectors by plants, and the sub- 
sequent signaling responses, result from an indirect mecha- 
nism (Bonas and Lahaye, 2002; Schneider, 2002). Dangl 
and Jones (2001) have proposed a 'guard' model, in which 
R proteins detect changes in the host targets of pathogen 
elicitors. Molecular evidence for indirect pathogen recogni- 
tion has come from studies of the R protein RPMl-interact- 
ing protein 4 (RIN4), which confers resistance against strains 
of Pseudomonas syringae that carry the avirulence factors 
AvrRpml or AvrB. The interaction of RIN4 with AvrRpml 
and AvrB lead to RIN4 phosphorylation, while the interac- 
tion of RIN4 with AvrRpt2 results in the degradation of 
RIN4, as well as the R proteins RPM1 and RPS2. Both RPM1 
and RPS2 serve as molecular guards of RIN4. The former 
monitors changes in RIN4 induced by AvrRpml or AvrB 
(Mackey et al., 2002), while the latter monitors the elimina- 
tion of RIN4 caused by AvrRpt2 (Axtell and Staskawicz, 
2003; Mackey et al., 2003; Day et al., 2005). Thus, RIN4 
functions as a common target of several pathogen elicitors, 
and is guarded by more than one R protein. The initiation of 
defense-signaling arises because of alterations in the host 
targets of those elicitors, rather than by direct binding of the 
elicitors to R proteins. Mackey et al. (2002) have suggested 
that RIN4 is a negative regulator of basal defense responses, 
and that the pathogen elicitor-targeting of RIN4 increases its 
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Figure 1. Structure and location of six main classes of plant disease resistance proteins. Classes 1 through 5 are defined based on combinations 
of a limited number of structural motifs. Class 6 includes R proteins that do not fit into the other 5 classes. LRR, leucine-rich repeat; NBS, nucle- 
otide-binding site; CC, coiled coil domain; TIR, Toll and interleukin 1 receptor domain. 

activity and suppresses the plant's basal immunity level. 

Recognition of PAMPs 

PAMPs, also referred to as general elicitors, are highly con- 
served structurally across a wide range of microbes, but are 
not found in potential host plants (N~rnberger et al., 2004). 
They often constitute indispensable structural components 
of the pathogen, and contain a conserved feature that is rec- 
ognized by pathogen receptors. A variety of surface-exposed 
and cytoplasmic bacterial molecules contain PAMPs (N~rn- 
berger et al., 2004). Their recognition by the plant receptors 
triggers mitogen-activated protein kinase (MAPK)-mediated 
signaling cascades that cause the rapid and transient phos- 
phorylation of specific nuclear, cytosolic, and membrane- 
bound proteins (Dietrich et al., 1990; Felix et al., 1991; 
Jonak et al., 2002; Peck, 2003; He et al., 2006). The first 
complete MAPK cascade in plants was described for Arabi- 
dopsis (Asai et al., 2002). This cascade was shown to func- 
tion downstream of the flagellin receptor FLS2, and to 
activate two plant-specific transcription factors. Transient 
overexpression of the components of that cascade confers 
resistance to bacterial and fungal pathogens (Asai et al., 
2002). Treating Arabidopsis suspension cells with lipopolysac- 
charide (LPS), a cell-surface component of Gram-negative 
bacteria, results in the production of nitric oxide (NO) 
through the activation of an NO synthase, Atnosl, that was 

previously associated with hormonal signaling (Zeidler et al., 
2004). In that earlier study, the expression of certain defense 
genes was nearly abolished in LPS-treated AthoS1 mutants, 
and those plants were more susceptible than the wild type 
to a virulent strain of P. syringae. These reports highlight the 
importance of NO production in responses to LPS. 

INDUCED RESISTANCE MECHANISMS 

There is considerable overlap between early physiological 
and biochemical events and the signaling requirements for 
different types of plant pathogen-defense responses. Interac- 
tions that result in resistance to a pathogen induce either an 
HR or an effective basal defense, while those that lead to 
the spread of the pathogen (compatible interactions) are 
characterized by an ineffective basal-defense response. 
While these responses to each type of interaction (resistance 
or compatible) may have many similarities, they differ in 
their timing and strength. 

The hypersensitive response (HR) 

The HR is characterized by localized, rapid death of host 
cells, and is believed to confine the growth of biotrophic 
pathogens during an incompatible interaction by inducing 
the production of antimicrobial compounds and limiting 
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nutrient uptake. Regulation of the HR involves an oxidative 
burst (Heath, 2000), ion channel activity (Atkinson et al., 
1996), and NO (Wendehenne et al., 2004), as well as inter- 
action among some of these various signals (Delledonne et 
al., 2001). Certain relative levels of both NO and H202 
induced in the host may be required for proper HR regula- 
tion (Delledonne et al., 2001), and the pattern of NO gener- 
ation might play a role in cell-signaling and cell death as an 
infection proceeds (Zhang et al., 2003). In support of this 
proposed function for nitric oxide, it has been shown that 
inhibition of NO synthesis or activity attenuates the HR. 
Interestingly, an Arabidopsis AtbohF/AtbohD double mutant, 
which is deficient in components of the NADPH oxidase 
complex that are thought to be involved in generating the 
HR-associated oxidative burst, lacks any detectable HzO2 
accumulation during resistance (Torres et al., 2002). In this 
double mutant, some early cell death is activated, suggesting 
that this event occurs independent of H202, and subse- 
quent death requires H202 generation. Thus, initial cell 
death during the HR may be both NO- and H202-indepen- 
dent. 

Other signaling molecules implicated in the HR include 
salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). 
Transgenic Arabidopsis plants that express the Pseudomonas 
putida gene for salicylate hydroxylase (nahG), which con- 
verts SA to catechol, are unable to accumulate SA and do 
not generate an HR (Heath, 2000). The phenotype of some 
lesion-mimic mutants, which develop spontaneous lesions 
that imitate HR-mediated cell death, can be suppressed 
when these mutants are placed in a NahG background, and 
the lesions can be restored in these plants by adding SA 
(Lorrain et al., 2003). Other lesion-mimic mutants exhibit 
intensified lesions in plants that are defective in JA- or E-l-sig- 
naling (Lorrain et al., 2003). These differences in the effects 
of SA, JA, and ET on lesion formation could be due to syner- 
gistic or antagonistic relationships among their respective 
signaling pathways. 

Systemic defense responses 

In addition to the HR, plants have general resistance 
responses that are induced after an HR, or during a success- 
ful infection, to either combat secondary infections from a 
broad spectrum of pathogens or to prevent an existing infec- 
tion from spreading further. One such general defense 
mechanism is known as systemic acquired resistance (SAR) 
(Ryals et al., 1996). The accumulation of SA is required prior 
to this onset of SAR. In transgenic plants expressing salicylate 
hydroxylase, which fail to accumulate SA, the establishment 
of SAR is prevented (Gaffney et al., 1993). For some plants, 
such as tobacco, cucumber, and Arabidopsis, treatment with 
SA, or its functional analogs 2,6-dichloroisonicotinic acid 
(INA) and benzo (I,2,3) thiadiazole-7-carbothioic acid S- 
methyl ester (BTH), is sufficient to induce SAR (M0traux et 
al., 1991; G6rlach et al., 1996). Thus, salicylic acid is some- 
times both necessary and sufficient for the induction of SAR. 
Such acquired resistance is believed to be a result of the 
concerted activation of PR genes (Yalpani et al., 1991; 
Uknes et al., 1992) because the overexpression of a single 
PR gene confers only limited protection to the plant (Alex- 
ander et al., 1993). Even though their roles in disease resis- 

tance have yet to be clearly elucidated, the expression levels 
of PR genes serve as convenient markers for monitoring 
SAR. It has become obvious that plants utilize multiple path- 
ways of transduction to activate the HR, SAR, and other 
resistance responses upon exposure to pathogenic signals. 
Likewise, it is now clear that SA-mediated SAR is not the 
only pathway that can lead to broad-spectrum disease resis- 
tance. Evidence is emerging to strongly suggest that JA and 
ethylene function as alternative signals in the induction of 
resistance against microbial pathogens, in addition to their 
well-characterized roles in the wounding response of plants. 

DISSECTION OF DEFENSE-SIGNALING PATHWAYS 

Three signaling molecules, SA, JA and ET, have now been 
identified as key factors in a variety of plant-defense 
responses. These include reactions to abiotic stresses, such 
as wounding and exposure to ozone, as well as to insect and 
microbial attacks (Dong, 1998; Feys and Parker, 2000). 
Here, we summarize our current understanding of the roles 
of SA-, JA- and ET-mediated signaling pathways in pathogen 
defense, and the considerable amount of synergistic or 
antagonistic cross talk between SA-dependent and JA/ET- 
dependent defense responses (Schenk et al., 2000; Kunkel 
and Brooks, 2002). 

SA-dependent signaling 

Salicylic acid plays a central role in local plant defense 
responses, and is required for the establishment of SAR. SA 
levels increase in plant tissues following pathogen infection, 
and exogenous applications result in enhanced resistance to 
a broad range of organisms (Ryals et al., 1996). 

Several mutants have been isolated with altered SA levels 
or defects in their SA sensitivity. These have been useful in 
determining the relative positioning of various signaling 
components in the SA-signaling pathway. For example, in 
the eds5-1 mutant (enhanced disease susceptibility), the 
level of PR-1 mRNA accumulation following virulent P. syrin- 
gae infection is approximately 10% of that in the wild type 
(WT), but the mutant plants are capable of mounting a par- 
tial SAR response, with levels of PR-2 and PR-5 mRNA 
equivalent to the WT (Glazebrook et al., 1996; Rogers and 
Ausubel, 1997). Other mutants with reduced PR-1 gene 
expression levels following pathogen attack include sid7 
(allelic to edsS-1) and sid2 (salicylic acid induction deficient) 
(Nawrath and M~traux, 1999), which are deficient in their 
accumulations of SA following infection. Expression of 51D7/ 
EDS5 increases with SA treatment, suggesting that a positive 
feedback mechanism exists (Nawrath et aL, 2002). SID1 
encodes a membrane-spanning transporter protein (Nawrath et 
al., 2002), and SID2 encodes a putative isochorismate syn- 
thase, which might be involved in the synthesis of SA from 
chorismate (Wildermuth et al., 2001). 

The pad1, pad2, pad3, and pad4 mutants (phytoalexin- 
deficient) have defects in their phytoalexin and SA accumu- 
lations, and reduced PR expression following pathogen 
attack by virulent P. syringae (Glazebrook and Ausubel, 
1994; Glazebrook et al., 1996). PAD4 acts upstream of SA, 
encoding a protein with predicted similarity to triacyl glyc- 
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erol lipases, resemblant of EDS1 (Zhou et al., 1998; Falk et 
al., 1999; Jirage et al., 1999). Lipases are hydrolytic 
enzymes that break down triacylglycerols into fatty acids 
and glycerols. Thus, it has been suggested that PAD4 may 
participate in the synthesis or degradation of a molecule 
involved in defense-signaling. 

JA-dependent signaling 
JA is a fatty-acid-derived signaling molecule that is associ- 

ated with several aspects of plant biology, including pollen 
and seed development, plus defenses against wounding, 
ozone, insect pests, and microbial pathogens (Creelman and 
Mullet, 1997; Reymond and Farmer, 1998; Li et al., 2001). 
Mutants ofA. thaliana that are either impaired in their ability 
to produce JA, such as the fad3/fad7/facl8 triple mutant (fatty 
acid desaturase), or unable to detect JA, such as coil (coro- 
natine insensitive1) and jar1 (JA resistant), exhibit enhanced 
susceptibility to a variety of pathogens, including the fungi 
Altemaria brassicicola, Botrytis cinerea, and Pythium sp., and 
the bacterium Erwinia carotovora (Staswick et al., 1998; 
Thomma et al., 1998; Vijayan et al., 1998; Stintzi et al., 
2001). These organisms, often referred to as 'necrotrophs', 
employ a common virulence strategy that involves rapidly 
killing plant cells to obtain nutrients (Jackson and Taylor, 
1996). Several JA-dependent genes that encode PR proteins, 
including plant defensinl.2 (PDF1.2), thionin2.1 (THI2.1), 
hevein-like protein (HEL), and chitinaseb (CHIB), are com- 
monly used in monitoring JA-dependent defense responses 
(Reymond and Farmer, 1998) 

JA-mediated defense pathways are constitutively acti- 
vated in the cevl mutant (constitutive expressor of VSP1), 
and in cet mutants (constitutive expressor of thionin). The 
cevl mutant shows constitutive expression of Thi2.1, 
PDF1.2, and CHI-B, and increased levels of JA and ET (Ellis 
and Turner, 2001; Ellis et al., 2002), while the cet mutants 
exhibit constitutive expression of )A-dependent genes, 
increased levels of JA, and spontaneous lesion development 
(Hilpert et al., 2001; Nibbe et al., 2002). It appears that this 
lesion formation in different cet mutants may result from 
cell-death pathways that are dependent and independent of 
SA. The cevl mutant has increased resistance to Erisyphe sp. 
(Ellis and Turner, 2001), but the response to pathogen infec- 
tion by constitutively active JA mutants has not been investi- 
gated. However, it seems likely that constitutive activation of 
JA-mediated signaling confers enhanced resistance to 
necrotrophic pathogens that are normally controlled by the 
JA pathway. 

ET-dependent signaling 

ET production is regulated by developmental signals, and 
in response to biotic and abiotic stimuli (Wang et al., 2002). 
Several mutants have been isolated with defects in their ET- 
mediated responses, as manifested in seedling morphologi- 
cal characteristics known as the triple response. These 
include ein (ET insensitive) and err (ET resistant) mutants 
(Bleecker et al., 1988; Guzman and Ecker, 1990). Compo- 
nents of the ET-signaling pathway include the nuclear-local- 
ized transcription factor EIN3, which activates ethylene 
response factor1 (ERF1). ERF1 is a member of the family of 

plant-specific ethylene-responsive element binding proteins 
(EREBPs); it binds to GCC box promoter elements to acti- 
vate such defense genes as PDF1.2 and CHI-B (Chao et al., 
1997; Solano et al., 1998). The GCC box motif is associated 
with ET, and is found in the promoters of many pathogen- 
responsive genes (Ohme-Takagi and Shinshi, 1995; BLittner 
and Singh, 1997; Chen et al., 2002). ERF1 expression can 
be induced by ET or JA; signaling from both pathways 
appears to be required for expression because mutations 
that block either the JA- or the ET-mediated signaling path- 
way prevent its expression in response to JA or ET, respec- 
tively (Lorenzo et al., 2003). Microarray analysis of plants 
over-expressing ERF1 have shown that ERF1 regulates the 
expression of both ET- and JA-responsive genes, indicating 
that ERF1 likely functions downstream of the intersection 
between those ET- and JA-signaling pathways (Lorenzo et 
al., 2003). 

Interactions between signaling pathways 

Although SA and JA/ET induce the expression of different 
subsets of PR genes, and are involved in resistance against 
specific pathogens, there is evidence of both synergism and 
antagonism between their pathways (Schenk et al., 2000; 
Glazebrook, 2001; Kunkel and Brooks, 2002). 

The SA and JA pathways often appear to act antagonistically. 
Salicylic acid has an inhibitory effect on JA biosynthesis and JA- 
responsive gene expression (Penninckx et al., 1996; Gupta et 
al., 2000). NahG-transgenic plants exhibit increased levels of JA 
and JA-responsive gene expression in response to biotrophic 
pathogens, indicating that pathogen-induced SA accumulation 
suppresses JA production and the expression of JA-responsive 
genes (Spoel et al., 2003). Jasmonate is also reportedly involved 
in the negative regulation of SA-signaling. For example, mpk4 
and ssi2, which are impaired in their JA-signaling, constitutively 
express SA-mediated defense responses (Petersen et al., 2000; 
Shah et al., 2001; Kachroo et al., 2003). 

SA and JA can also act synergistically to induce the expres- 
sion of defense-associated genes (Schenk et al., 2000). In 
the ssil mutant (_suppressor of S_A insensitivity), constitutive 
expression of PDF1.2 and NPR14ndependent expression of 
PR-1 require not only SA, but also the JA- and ET-signaling 
pathways. This suggests that SSI1 plays a role in regulating 
crosstalk between the SA- and JA/ET-signaling pathways 
(Shah et al., 1999; Nandi et al., 2003). In addition, NPR1- 
independent resistance in cpr5 and cpr6 mutants (constitu- 
tive expressor of PR genes) requires SA and components of 
the ET and JA pathways (Clarke et al., 2000). 

The ET and JA pathways often appear to act synergistically. 
In microarray analysis, Schenk et al. (2000) have found that 
most of the genes induced by ET are also induced by MeJA. 
Furthermore, both JA and ET are necessary for PDF1.2 
expression (Penninckx et al., 1996; Ellis and Turner, 2001), 
and SA-independent systemic resistance requires both JA- 
and ET-mediated signaling (Pieterse et al., 1998). 

Using microarray analysis of mutants defective in their SA-, 
JA-, and/or ET-mediated defense-signaling, Glazebrook et al. 
(2003) have been able to identify components of these sig- 
nal-transduction pathways, and have grouped those mutants 
according to their gene expression profiles induced by infec- 
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tion with virulent R syringae. Their results suggest that, in 
response to virulent bacterial pathogen attack, SA- and JA- 
mediated signaling oppose each other, JA- and ET-mediated 
signaling generally act together, and SA- and ET-mediated 
signaling tend to oppose each other. 

CONCLUDING REMARKS 

Significant progress has been made in the identification of 
R genes from various plants. In contrast to early speculation 
that mutations resulting in plant resistance would occur in 
many different types of genes, the evidence to date demon- 
strates a remarkable degree of conservation of both domi- 
nant and recessive resistance in plants. Most of the genes 
isolated and characterized fall into related categories of 
NBS-LRR domain-containing proteins. Given the striking 
overall conservation among many of the R genes already 
identified, it becomes very compelling to investigate how 
those genes function to produce resistance because insights 
drawn from one system are likely to be broadly applicable. 
One promising area currently under examination is the 
identification of host proteins that interact with the prod- 
ucts of pathogen genes during infection. This topic of interest 
is focused primarily on understanding the mechanisms of 
infection and pathogenesis, rather than of resistance, and has 
exploded with the advent of yeast two- and three-hybrid 
assays, as well as other assays designed to detect specific pro- 
tein-protein interactions. An important challenge in this 
research is to determine the degree to which an interaction 
identified in yeast or in vitro also occurs in planta. The next 
generation of candidate genes will undoubtedly come from 
these studies. A major discovery that has emerged in the past 
decade, one with profound impNcations, is the role of gene- 
silencing in pathogenesis and resistance. This has led to the 
development of a powerful genetics approach, i.e., reverse 
genetics, in which genes are identified by the phenotypes 
associated with their silencing. Reverse genetics is becoming 
increasingly important in projects involving high-throughput 
functional genomics analyses of plant species. 
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